DESCRIPTION

The CKD34063 Series is a monolithic control circuit containing the primary functions required for DC to DC converters. These devices consist of an internal temperature compensated reference, cómparator controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

FEATURES

*Operation from 3.0V to 40 V .
*Short circuit current limiting.
*Low standby current.
*Output switch current of 1.5A without external
transistors.
*Frequency of operation from 100 Hz to 100 kHz .
*Step-up, step-down or inverting switch regulators.

*Pin to pin compatible with MC34063

BLOCK DIAGRAM

PIN CONFIGURATION

ORDERING INFORMATION

Device	Operating Temperature Range	Package
CKD34063D	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PDIP-8
CKD34063S	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SOP-8

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$ [Note 3], unless otherwise specified.)

Characteristics	Symbol	Min	Typ	Max	Unit

OSCILLATOR

Frequency $\left(\mathrm{V}_{\text {pin5 }}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{f}_{\text {osc }}$	24	33	42	kHz
Charge Current $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ to $\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {chg }}$	22	33	42	uA
Discharge Current $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ to $\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {dischg }}$	140	200	260	uA
Discharge to Charge Current Ratio (Pin 7 to $\left.\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {discha }} / \mathrm{I}_{\text {cha }}$	250	300	350	mV
Current Limit Sense Voltage ($\left.\mathrm{I}_{\text {chg }}=\mathrm{I}_{\text {dischg }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {iok(sense) }}$	250	300	350	mV

OUTPUT SWITCH (Note 4)

Saturation Voltage, Darlington Connection (Note 5) $\left(\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}\right.$, Pins 1,8 connected)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	1.0	1.3	V
Saturation Voltage, Darlington Connection $\left(\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}, \mathrm{R}_{\text {pin }}=82 \Omega\right.$ to V_{CC}, Forced $\left.\beta=20\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.45	0.7	V
DC Current Gain $\left(\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	h_{FE}	50	120	-	-
Collector Off-State Current $\left(\mathrm{V}_{\mathrm{CE}}=40 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{C} \text { (off) }}$	-	0.01	100	uA

COMPARATOR

Threshold Voltage $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \end{aligned}$	$\mathrm{V}_{\text {th }}$	$\begin{aligned} & 1.23 \\ & 1.2225 \end{aligned}$	1.25	$\begin{aligned} & 1.27 \\ & 1.2475 \end{aligned}$	V
Threshold Voltage Line Regulation ($\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$ to 40 V)	$\mathrm{Reg}_{\text {line }}$	-	1.4	5.0	mV
Input Bias Current ($\mathrm{V}_{\text {in }}=0 \mathrm{~V}$)	I_{18}	-	-40	-400	nA

TOTAL DEVICE

| Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ to $40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}$, Pin $7=\mathrm{V}_{\mathrm{CC}}$,
 V^{2} I_{CC} | - | 2.5 | 4.0 | mA |
| :--- | :--- | :--- | :--- | :--- | :--- |

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\text {cc }}$	40	Vdc
Comparator Input Voltage Range	V_{18}	-0.3 to +40	Vdc
Switch Collector Voltage	$\mathrm{V}_{\text {C(switch) }}$	40	Vdc
Switch Emitter Voltage ($\mathrm{V}_{\text {pin } 1}=40 \mathrm{~V}$)	$\mathrm{V}_{\mathrm{E} \text { (switch) }}$	40	Vdc
Switch Collector to Emitter Voltage	$\mathrm{V}_{\text {CEI(switch) }}$	40	Vdc
Driver Collector Voltage	$\mathrm{V}_{\text {C(driver) }}$	40	Vdc
Driver Collector Current (Note 1)	$\mathrm{I}_{\text {cardiver }}$	100	MAO
Switch Current	$\mathrm{I}_{\text {sw }}$	1.5	A
Power Dissipation and Thermal Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance	$\begin{array}{r} P_{\mathrm{D}} \\ \mathrm{R}_{\text {抁 }} \\ \hline \end{array}$	$\begin{aligned} & 1.0 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE :

1. Maximum package power dissipation limits must be observed.
2. ESD data available upon request.
3. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
5.If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to 2.0 uS for it to come out of saturatiion. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:
Forced β of output switch: $\frac{\text { Ic output }}{\text { Ic driver }-7.0 \mathrm{~mA}^{*}} \geqq 10$
*The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

TYPICAL PERFORMANCE CHARACTERISTICS

V_{FB}, Threshold Voltage vs Temperature

Emmiter-Follower Configuration Output Switch Saturation Voltage vs Emmiter Current

IPK Threshold Voltage vs Temperature

Common-Emitter Configuration Output Switch Saturation Voltage vs Collector Current

Note 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.

Figure 1. Voltage Inverting Converter

Test	Condition	Results
Line Regulation	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$	$3.0 \mathrm{mV}= \pm 0.012 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{lo}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V}= \pm 0.09 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{Io}=100 \mathrm{~mA}$	500 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{Io}=100 \mathrm{~mA}$	62.2%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{lo}=100 \mathrm{~mA}$	70 mVpp

Figure 2. External Current Boost Connections for Ic Peak Greater than 1.5 A

2a. External NPN Switch

2b. External PNP Saturated Switch

Figure 3. Step-Down Converter

Test	Condition	Results
Line Regulation	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{lo}=500 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 0.12 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{lo}=50 \mathrm{~mA}$ to 500 mA	$3.0 \mathrm{mV}= \pm 0.03 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{lo}=500 \mathrm{~mA}$	120 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	1.1 A
Efficiency	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{lo}=500 \mathrm{~mA}$	83.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\mathrm{in}}=25 \mathrm{~V}, \mathrm{lo}=500 \mathrm{~mA}$	40 mVpp

Figure 4. External Current Boost Connections for Ic Peak Greater than 1.5 A

4a. External NPN Switch

4b. External PNP Saturated Switch

Figure 5. Step-Up Converter

Test	Condition	Results
Line Regulation	$\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	$30 \mathrm{mV}= \pm 0.05 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{Io}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV}= \pm 0.017 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	400 mVpp
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	87.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{Io}=175 \mathrm{~mA}$	40 mVpp

Figure 6. External Current Boost Connections for Ic Peak Greater than 1.5 A

6a. External NPN Switch

6 b. External NPN Saturated Switch
(See Note 5)

Note 5: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to 2.0 us to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

Packaging Information

NOTE : Dimensions are in millimeters.

8-DIP-300 Package Dimensions

NOTE : Dimensions are in millimeters.

8-SOP-150 Package Dimensions

